-A A +A
Emerging wide bandgap semiconductor devices such as the ones built with SiC have the potential to revolutionize the power electronics industry through faster switching speeds, lower losses, and higher blocking voltages, which are superior to standard silicon-based devices. The current epitaxial technology enables more controllable and less defective large area substrate growth for the hexagonal polymorph of SiC (4H-SiC) with respect to the cubic counterpart (3C-SiC). However, the cubic polymorph exhibits superior physical properties in comparison to its hexagonal counterpart, such as a narrower bandgap (2.3 eV), possibility to be grown on a silicon substrate, a reduced density of states at the SiC/SiO2 interface, and a higher channel mobility, characteristics that are ideal for its incorporation in metal oxide semiconductor field effect transistors. The most critical issue that hinders the use of 3C-SiC for electronic …
AIP Publishing LLC
Publication date: 
28 Jun 2020
Biblio References: 
Volume: 7 Issue: 2 Pages: 021402
Applied Physics Reviews